
Microcomputer PROLOG implementations:
The state-of-the-art

by HAL BERGHEL and RICHARD RANKIN
University of Arkansas
Fayetteville, Arkansas

ABSTRACT

In this paper we discuss several characteristics of microcomputer PROLOG
implementations including an overview of current products, a comparison of the
range of built-in predicates, a description of the environment, and benchmark
results.

27

From the collection of the Computer History Museum (www.computerhistory.org)

From the collection of the Computer History Museum (www.computerhistory.org)

Microcomputer PROLOG Implementations: The State-of-the-Art 29

INTRODUCTION

Although logic programming has a relatively short history in
computer science, its impact has been significant. After the
announcement that the Japanese Fifth Generation Project
would standardize Japan's 1990s machines around the logic
programming approach ,1 industry leaders and researchers
began to devote considerable attention to this area. What
follows is a general description of the various implementations
of the logic programming language PROLOG that are avail­
able for microcomputers. These implementations are of con­
siderable importance, for they allow virtually every interested
person to enter the world of logic programming with minimal
expense. It is our intention to acquaint interested readers
with the current state-of-the-art.

PROLOG, as a logic programming language, developed
from the early work of Kowalski2

, 3, 4 and Colmerauer5
,6 in

the 1970s. As this work circulated, prototypes of the language
appeared in France, England, Hungary, and Canada, and
each was injected with some of its own design philosophy. As
a result, there are at least three different models, each relying
upon its own distinctive syntax, and each appealing to a par­
ticular subset of the researcl>Jdevelopment community. To
standardize our treatment of a non-standardized language,
we employ the Edinburgh nomenclature 7 in the following
discussion.

One of the most significant aspects of PROLOG is that, at
least in the ideal, it supports a clear distinction between the
logic of the program and the mechanism of control. 8 This
means that the programming is oriented toward the logic of
the problem, leaving the control mechanism to the system.
The important implication of this strategy is that the range
of built-in predicates affects the convenience and speed of
software development. However, since the various software
houses have different design objectives, the predicates are not
uniformly distributed over the entire range. Thus, some prod­
ucts may be better suited for certain applications than others.
We provide a detailed classification of these predicates to­
gether with an analysis by product.

Of course, since the control mechanism is largely left to
the implementation, differing strategies will have different
effects upon performance. We also provide a series of bench­
mark results which shed light on the relative performance
characteristics.

The products reviewed here are, alphabetically, Arity
PROLOG, version 4.0 (Arity Corporation); micro-PROLOG
professional (Logic Programming Associates); MPROLOG,
version 2.1 (Logicware); PROLOG 2, version 1.2 (Expert
Systems International); PROLOG-86 + , version 1.0 (Solu­
tion Systems); Turbo PROLOG, version 1.0 (Borland Inter­
national) and VML PROLOG, version 1.9m (Automata

Design Associates). We believe these are the most current
versions. Only one of the MS-DOS implementations that
we know of, PROLOG-V, was not included (at the request
of the manufacturer). One product from Applied Logic
Systems was announced but not released as of this writing.
This paper updates and integrates the results presented in
earlier publications and reports. 9, 10,11

GENERAL DESCRIPTION OF THE
IMPLEMENTATIONS

A general summary of the implementations appears in Table
1. As the table shows, two of the products provide compilers,
and all but one provide interpreters. The lack of an interpreter
for Turbo PROLOG is intended; the designers have devel­
oped a compiler that behaves as if it were incremental (!),
therefore they believe the interpreter is not needed.

Three of the products support virtual memory (up to one
gigabyte in some cases), and all but one provide shell support

TABLE I-Overview

Product:
Version:

Interpreter
Compi ler
Virtual Memory
Shell Support
DOS Services
Time/Date
Interrupt Facilities
Directory Facilities
Keyboard Facilities
Internal Clock Timing

Editor
Interactive
Multiple Windowing
Screen Control

Modularization
Module Privacy
Export/Import
Multiple Worlds
Multiple Theories

Database Indexing
Clause Indexing
Hashing
B-Trees

Optimization

P2 AR LPA MP P86 VML TUR
1.2 4.0 PRO 2.1 1.0 1.9 1.0

+
+
+
+

+

+
+
+
+
+
+

+

+

+
+

+
+
+

+

+

+

+

+

+

+

+

+
+
+
+

+

+

+
+
+

+

+

+

+
+

+

+

+

+
+
+

+

+

+

+

+

+

+
+
+
+

+
+

+

+

+
+
+
+

+
+
+
+

Cyclic Structure Checking
Garbage Collection Control +
TRO + +

+

+
+

+
Stack Control

System Information
LIPS count
Heap Used/Remaining
CPU Time

DCG
Structured Programming

b-i preds (approx.)

+

+/+ +/- -/+ -/- -/+ -/+ -/+

+ +
+ +

+ +

255 170 90 150 155 210 90

From the collection of the Computer History Museum (www.computerhistory.org)

30 National Computer Conference, 1987

which allows users to suspend PROLOG and execute inde­
pendent object modules without altering the state of the
interpreter (see the Built-In Predicates section). Among the
DOS services supported are those concerning the time/date
information in the control information area, the BIOS/DOS
interrupt facilities, directory-related function calls (e.g., DIR,
MKDIR, CHDIR, RENAME, and COPY), and keyboard
facilities for retrieving scan codes and information from the
keyboard status byte. In addition, some products allow the
use of a programmable timer.

By interactive editor, we refer to an automatic re-invocation
of the editor upon determination of compiler/run-time error.
Multiple windowing refers to the ability to define different
screen functions for the available window partitions. Screen
control allows the user to configure the system for the desired
video attributes beyond the DOS specification for video
mode.

Six products support modularization of procedures. Mod­
ule privacy is a technique whereby predicates are hidden from
users, frequently to prevent name conflicts between modules.
Worlds and theories are similar entities that are used to ac­
complish roughly the same thing. Technically, a world is a
region within a database. One normally would use individual
worlds to avoid backtracking through the larger database of
which the world is a part. A theory is a database region which
may involve the physical separation of the clauses into sepa­
rate files.

Database indexing refers to the way in which the clauses are
indexed and accessed. Clause indexing involves addressing a
clause by its internal reference number. Hashing and B-trees
increase the efficiency of searching. All of these features are
extremely important for large clause sets.

The sub-category entitled optimization is a grab-bag of fea­
tures which in one way or another relate to the efficiency of
the implementation. A cyclic structure is created when a vari­
able is unified with a term which contains that variable. The
result is the generation of an infinite term as the unification
repeatedly instantiates the term's variable with itself. It is
not at all clear that the procedural interpretation of this phe­
nomenon is consistent with the semantics of first order logic.
Occur checks anticipate this behavior, but do so at consid­
erable cost in efficiency. As a result, occur checking is not
supported (as far as we know). A compromise is cyclic struc­
ture checking. In this case, the variable responsible for the
infinite loop is returned in lieu of the infinite term. This sur­
rogate does not appreciably decrease performance. Garbage
collection control and stack control allow a programmer
greater latitude in speed/space trade-offs. TRO stands for tail
recursion optimization.

The system information features are useful for bench­
marking and program development. DCG refers to the mech­
anism for translating definite clause grammars into PROLOG
clauses. Finally, a ' + ' for structured programming indicates
that such control structures as "if then ... else ... ," "case,"
and so forth, are available.

We note that the number of built-in predicates specifically
excludes a count of logical and arithmetic operators. Further,
the numeric tally of the built-in predicates should be inter­
preted as an estimate of the number of substantially different

predicates, rather than the total number. For example, since
the distinction between" getO(term)" and" getO(handle , term)"
is one of input type rather than functionality, both would be
subsumed under one predicate. However, the capabilities of
redirecting the standard input would be noted in the feature
tables. Other cases of essentially duplicate functionality in­
clude predicates related to I/O, clause handling, formatting,
string manipulation, and so forth. We believe that this "selec­
tive tally" approach provides a more reasonable first glance
estimate of overall functionality than those which overlook
the fact that some predicates are extremely narrow in scope,
and that predicates are not distributed uniformly over the
range covered in our classification.

One general consideration does not appear in the table.
This concerns the issue of whether one of the products is a
legitimate PROLOG. We do not enter into the controversy
here beyond mentioning that Turbo PROLOG is a strongly
typed language that does not support general unification.
Further, it lacks the metalogical facilities normally associated
with PROLOG environments. For further details on this is­
sue, see Weeks and Berghel10 and Pereira. 12 Additional dis­
cussion of Turbo PROLOG can be found in Rubin13

,14 and
Shammas.15

BUILT-IN PREDICATES

The classification of predicates used here is an emendation of
the taxonomy employed in Weeks and Berghel. 9 The scheme
is somewhat arbitrary and is simply the approach to the
classification we find convenient. We call attention to the fact
that the categorization is intended only for ease of use. For
example, creating a separate category for strings does not
imply that strings are separate data structures. No predicate
was counted unless it appeared in the documentation for
the product. Since the tables are self-explanatory, we make
only very general comments regarding anomalies within the
classification.

LPA's micro-PROLOG is distinctively different in terms of
built-in predicates. In this case, there are multiple program
environments, each of which has its own set of predicates.
The environments are SIMPLE, micro-PROLOG, and
DECsystem-lO. Both SIMPLE and micro-PROLOG use
syntax based upon the Marseilles implementation, where­
as DECsystem-10 is essentially the Edinburgh syntax. Fur­
ther, as a simplified interactive version of micro-PROLOG,
SIMPLE has its own character: it supports infix notation. This
makes the classification difficult because the range of built-in
predicates depends upon the environment.

Although SIMPLE and micro-PROLOG are compatible
to the extent that any module written in SIMPLE can be
included in micro-PROLOG, neither is completely compat­
ible with the DECsystem-10 environment. To illustrate, one
can access micro-PROLOG clauses from the DECsystem-lO
mode, but not the converse. As a result, such features as
DCG's, which are supported in the DECsystem-lO environ­
ment, are not available under micro-PROLOG. Thus, the
question becomes one of which environment should be com­
pared. Since the DECsystem-10 predicates are only a subset

From the collection of the Computer History Museum (www.computerhistory.org)

Microcomputer PROLOG Implementations: The State-of-the-Art 31

TABLE II-I/O predicates

Product: P2 AR LPA MP P86 VML TUR

PROGRAM/CLAUSE I/O
save ws by predicate(s)
delete ws by file
replace ws w/file
update file from ws
load/save binary image
load/save state

CHARACTER I/O

+

+

+

+

+

+

+

get char from stream/file
get pr char (stream)

+/+ +/+ -/- +/+ +/+ +/+ +/+
+ + + +

get w/o echo (stream) + + +

skip to char (stream/file)
skip w/o echo (stream)

+1+ +1+ -1- -1- +/+ +/+ -/-

+ +
put char to stream/file
newline (stream/file)

+/+ +/+ -/- +/+ +/+ +/+ +/+

+/+ +/+ -/- +/+ +/+ +/+ +/+

newpage (stream)
write spaces (stream/file) +/+

STRING liD
get string from stream/file +/+

put string to stream +

TERM liD
read term from stream/file +/+

read token from str/file +/+

read number from str/file +/+
write to stream/file +/+

wri~e quoted to str/file +/+
write ops prefix str/file +/+

write formatted +
declare operator +
remove operator +

get info about operator +

define a prompt for I/O +
direct file access position +
fixed length file access
report on output environment +

+
+/+ -/- +/+ +/+

+/+ -/- +/+ +/-

+ + +

+/+ +/+ +/+ +/+

-/- +/+ +/+ +/+

-/- -/- -/- -/-
+/+ +/+ +/+ +/+
+/+ +/+ +/+ +/+

+/+ -/- -/- -/-

+ + +
+ +

+ +
+ +

+ +
+
+ +

+

+
+

+

+
+/+

+/+

+

+/+

+/+

+/+

+/+
+1+
+/+
+
+
+

+

+/+

+/+

+

+/+
-/­
+1+
+/+
+1+
-1-
+

+

of ClocksiniMellish, we evaluated micro-PROLOG. We em­
phasize that without complete compatibility, representing the
product by an "inclusive-or" tally of each of the three environ­
ments would be misleading.

In a similar vein, M PROLOG has a distinctive way of
supporting predicates. Some predicates, such as those for
program/clause I/O and debugging and tracing, are supported
only within the professional editor, PDSS. As a result, the
tally of predicates refers only to those predicates in the
language, although the features supported include those sup­
ported in PDSS as well. We believe this is the most reason­
able way to describe M PROLOG.

With regard to program/clause I/O (see Table 2), the kernel
is the pair of predicates which loads and stores a file (vari­
ations of consult and reconsult). However, the enhancements
mentioned in Table 2 can save an enormous amount of work.
One must remember that only consult and reconsult were
present in the original PROLOG specification, so the vari­
ation between products is quite wide. For example, some
products offer load options that are not cumulative and others
use buffered I/O which is user-transparent.

Since the control predicates for success and failure are
part of the language standard (such that it is), they are not
included in the comparison (see Table 3). We note, however,
that Turbo lacks the success predicate. Further, it is now quite
common for products to include limited cuts (e.g., "snips"),
which are l!~eful but not part of the original language. In

TABLE III-Control predicates

Product:

STREAM/FILE CONTROL
create a file
open a stream/file
close a stream/file
temporary redir stdin
temporary redir stdout
turn on/off error calls

BACKTRACKING
cut
repeat
logical set
explicit procedure call
special termination
number of solutions

P2 AR LPA MP P86 VML TUR

+ + + + + +

+/+ +/+ +/+ +1+ +1+ +/+ +/+
+/+ +/+ +/+ +/+ +/+ +/+ +/+

+ + + + + + +

+

+

+

+
+

+ + + + +
+

+

+
+
+

+

+

+
+

+

+
+
+
+

+

+

+
+

+
+

+
+

+

+

+

Table 5, full relational set refers to the set of operators
{ < , > ,< = , = > } or their notational equivalents.

Structure manipulation (see Table 7) is important if one is
to take full advantage of symbolic programming. Particularly
important are such predicates as the ability to unify on arbi­
trary tree structures, decompose, compose, and convert be­
tween structures.

We also wish to note that, in contrast to earlier re­
ports ,9, 10, 11 the present comparison indicates that a great deal
of attention is being paid to extensions to the language. We
believe that this reflects a desire on the part of the developers
to establish PROLOG as a complete language environment
rather than simply an experimental tool. To illustrate, the
number of built-in predicates in the products under study
that are not directly related to PROLOG typically constitute
between 25 percent to 35 percent of the total.

PERFORMANCE CHARACTERISTICS

Traditionally, performance assessments fall into two cate­
gories. In some cases, the analysis is based upon an abstract
model of the environment. Simulation and stochastic model­
ing illustrate this sort of evaluation. In other cases, the actual
performance of the system in use is measured. These are
usually called "benchmarks" or "workload models." In either
case, one seeks to extract from the analysis some estimate of

TABLE IV-Term predicates

Product:

CLASSIFICATION/CONVERSION
is a variable
is a non variable
is an atom
is a number
is either atom or number
is a list
is quoted
is name

COMPARISON
matching plus unification
does not match
equivalent
not equivalent
relational inequalities

P2 AR LPA MP P86 VML TUR

+
+
+
+
+
+

+

+
+
+

+
+
+

+

+

+
+
+

+

+

+
+

+

+

+
+

+
+

+

+

+
+
+

+

+
+
+
+

+

+
+
+
+
+

+

+
+
+

+

+
+
+
+
+

+

+
+
+

+

From the collection of the Computer History Museum (www.computerhistory.org)

32 National Computer Conference, 1987

TABLE V-Arithmetic evaluation predicates and operators

Product: P2 AR LPA MP P86 VML TUR

PREDICATES
evaluate and unify
arithmetically equal
not arithmetically equal
full relational set

OPERATORS
arithmetic operators
X**n
int(f or n)
float(f or n)
log2(X)
loglO(X)
lognat(X)
abs(X}
round(X,N}
sqrt(X}
sinO}
cos(X}
tan(X}
asin(X}
acos(X)
atan(.X)
floor(X)
greatest integer
atoi«ascii>,(int»
stof«ascii>,(flt»
bitwise AND
logical AND
bitwise OR
logical OR
bitwise EXCL-OR
logical EXCL-OR
bi twise NEGATION
arithmetic NEGATION
n-bit shift(left)
n-bit shift(right)
random number
random seed
counter

+
+
+

+
+
+

+

+
+

+
+
+

+

+

+
+
+

+

+
+

+

+

+
+
+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+
+
+

+

+

+
+
+

+
+

TABLE VI-Database control predicates

Product:

CLAUSE CONTROL
list all clauses

P2

+
list specified clauses +

assemble/disassemble clause +

add a clause to the database +
remove:
first clause for predicate +
all clauses for predicate +

report presence of predicate +

TERM CONTROL
record term
erase term
report term
replace term
manipulate reference #

AR LPA

+ +

+
+

+
+

+
+
+
+
+

+
+

+

MP P86 VML

+
+
+
+

+
+

+
+
+
+

+

+
+
+

+
+

+

+

+
+

+

+

+

+
+
+

TUR

+

+

system performance in terms of responsiveness, throughput,
and cost. 16

Ideally, the programs used in benchmarking are known a
priori to be relevant to the intended application of the com­
puter resource. From our experience, this ideal is seldom
realized. Instead, general-purpose and "home-grown" pro­
grams which anticipate patterns of usage are used. Of course,
if the anticipated patterns are unrealized, the benchmark re-

TABLE VII-Structure manipulation predicates

Product: P2 AR LPA MP P86 VML TUR

structure unification pred
get the Nth argument
convert list/structure
convert list/atom
convert list/string
length of a list
sort list
append

+
+

+
+
+
+
+

+
+
+
+

+
+

TABLE VIII-Set predicates

+
+
+

+
+
+

+
+
+
+
+
+

+
+

+

+

+

Product: P2 AR LPA MP P86 VML

set unification
findail/bagof
membership
intersection
union

+
+

+
+

+

TABLE IX-String predicates

+ +
+ +

+

Product: P2 AR LPA MP P86 VML

search for substring
get substring
get position of substring
get length of substring
get length of string
concatenate strings

+
+

+
+

+

+

+
+
+
+

+
+

+

TABLE X-Debugging and trace predicates

+

TUR

+

TUR

+

Product: P2 AR LPA MP P86 VML TUR

trace program execution
trace single goal
trace multiple goals
report goals to be traced
goal ancestry

+
+
+
+
+

+
+
+
+

+
+
+
+

+
+

+
+

+
+
+
+
+

+
+

+
+

+

TABLE XI-Shell support predicates

Product:

EXEC
report file existence
rename a file
erase a file
link files

P2 AR LPA MP P86 VML TUR

+
+
+

+

+
+
+

+

+
+

+ +

+
+

+

+

+
+
+
+

suits are likely to be unreliable. We mention this because we
believe benchmarks are very coarse measurements; and,
consequently, we encourage readers to take our results with
a large grain of salt.

Benchmarks are not without value as long as their results
are not misused. Misuse can result from misrepresenting the
relevance of the test or by misinterpreting the resuits.17 We
propose a modest objective: we try to gain some general un-

From the collection of the Computer History Museum (www.computerhistory.org)

Microcomputer PROLOG Implementations: The State-of-the-Art 33

derstanding of the performance of the PROLOG products by
running rather typical sorts of procedures, in fact, those pro­
cedures we use most often. As a result, our findings are biased
toward our own inter~sts in computationallinguistics18

, 19 and
approximate string matching. 2o

,21 However, because the rou­
tines we used are mainstream, our results may be of interest
to others.

In the interest of completeness, we refer the reader to the
work of Wilk at Edinburgh. 22,23 Wilk's approach is completely
different. His intention is to develop standard benchmark
techniques for PROLOG environments, carefully selecting
benchmarks so that the entire breadth of PROLOG func­
tionality is measured. This is an ambitious project and worthy
of continued attention, although we suspect no general agree­
ment will be reached regarding the confidence level to assign
to his tests.

We also call your attention to other PROLOG benchmark
results appearing in the trade press, 15, 24 which occasionally
are at odds with our own.

BENCHMARK RESULTS

We begin the results discussion with an analysis of recursion
limits. Because PROLOG is an ideal environment for recur­
sion, it is natural to determine the cost of implementation. In
microcomputer environments, memory consumption usually
is more critical than processing speed. The part of memory
most affected is the stack. Unless some optimization takes
place, recursion may fill the stack with unnecessary latent
calls. To reduce this problem, software developers implement
such functions as structure sharing, garbage collection, and
last call optimization. Because users typically have no way of
knowing whether and to what extent optimization is present,
empirical tests are useful.

We performed two separate recursion tests on each prod­
uct. The tests were adapted from Covington. 25 The number
of full recursions before failure (stack space exceeded) is
presented in Figure 1. When possible, we defined the largest
stack space possible in the environment file. Otherwise, de­
fault values were used.

Tail recursion (see Figure 2) should be more efficient be­
cause the recursion is invoked at the end of a goal set. For

RECURSIONS

8000

7000

6000

5000

4000

3000

2000

1000

2573

1806

P86 VML API P21

7780
7351

2713

MP LPA APC P2C TUR

Figure I-Recursions before failure (normal recursions)

RECURSIONS

70000

60000

50000

40000

30000

20000

10000
1363 1499

o --

34745

75000 75000

18094

I

36852

2525
a:;:;;::R

75000

PBS VML API P21 MP LPA APe P2C TUR

Figure 2-Recursions before failure (tail recursion)

interpreted PROLOG 2, micro-PROLOG, and Turbo, the
tests were terminated at 75,000 recursions. Since these prod­
ucts claim optimized tail recursion, additional testing seemed
unnecessary. In the case of Arity PROLOG, the failure was
not a result of non-optimization; it was a result of the way
that the counter represents large integers. Because there is no
way of determining the upper bound on recursions without a
counter, Figure 2 provides the actual results without adjust­
ment.

The next benchmarks deal with string operations, and are,
for the most part, standard procedures defined in Clocksin
and Mellish.7 The values are presented in terms of run times.
The results of all tests appear in Figures 3 and 4. Naive re­
verse is a variation on the de facto standard benchmark for
PROLOG. Despite its frequent use, it has shortcomings: it
can overstate the efficiency of the implementation.

The last test (see Figure 5) is a general benchmark which is
supposed to have its origins in ICOT. The code fragment is as
follows:

tak(X,Y,Z,Z):-X = <Y,L
tak(X, Y ,Z,R):­

takl(X,Y,Z,Rl),!,
takl(Y,Z,X,R2),!,

SECONDS
500

400

300

200

100

PB6

412

249

VUL API P21

I
Append

Reverse

Delete

Substitute

Unwind

UP

Figure 3--String functions (interpreters)

LPA

From the collection of the Computer History Museum (www.computerhistory.org)

34 National Computer Conference, 1987

SECONDS

7

6

5

4

3

2

1

0

APC

7

4

2

P2C

~~~ Append 

Reverse 

Delete 

Substitute 

Unwind 

na 

TUR 

Figure 4-String functions (compilers) 

SECONDS 

300 

260 

250 

200 

150 

100 

50 
44 36 

0 na 4 1 

P86 VML API P21 MP LPA APe P2C TUR 

Figure 5-Agglomerative benchmark 

takl(Z,X,Y,R3),!, 
tak(RI ,R2,R3 ,R),! . 

takl(X,Y,Z,R):-XI is X-I, 
tak(Xl, Y ,Z,R). 

?-tak(12,8.4,N). 

The test was provided by Robert Morein of Automata 
Design Associates. It is an agglomerative measure which at­
tempts to assess the overall strengths of the products. We note 
that PROLOG 86 + would not run the program, presumably 
due to inefficienl memory reclamation. 

For additional details on these and other benchmarks, in-

cluding a listing of the clause sets, see Berghel, Stubbendieck, 
Traudt. 11 

CONCLUSION 

As increasing attention is paid to PROLOG, growing num­
bers of researchers and system developers wish to avail them­
selves of PROLOG implementations. For many, micro­
computer-based products offer the most cost-effective way to 
exploit logic programming. This paper is intended as a general 
overview of these products so that interested parties may se­
lect the product most consistent with their needs. 

From the collection of the Computer History Museum (www.computerhistory.org)



Microcomputer PROLOG Implementations: The State-of-the-Art 35 

ACKNOWLEDGEMENTS 

The classification scheme used in this paper is a result of 
collaboration with J. Weeks. The benchmark results are taken 
from earlier work with G. Stubbendieck and E. Traudt. We 
wish to thank L. Baxter, P. Gabel, J. Grayson, and R. Morein 
for many useful comments and criticisms. 

REFERENCES 

1. Mota-Oka, T. (ed.) Fifth Generation Computer Systems (Proceedings of 
the International Conference on Fifth Generation Computer Systems). 
Amsterdam: North Hollan.d, 1982. 

2. Kowalski, R. "Search Strategies for Theorem Proving." In B. Meltzer and 
D. Michie (eds.) Machine Intelligence (Vol. 5). New York: Edinburgh 
University Press, 1969. 

3. Kowalski, R. "And-Or Graphs, Theorem Proving Graphs and Bi­
directional Search." In B. Meltzer and D. Michie (eds.) Machine Intel­
ligence (Vol. 7). New York: Edinburgh University Press, 1972. 

4. Kowalski, R. "Predicate Logic as a Programming Language." Proceedings 
of IFIP 74, 1974, pp. 569-574. 

5. Colmerauer, A., H. Kanoui, R. Pasero, and P. Roussel. "Un Systeme de 
Communication Homme-Machine en Fram;ais." Report, Group Intelli­
gence Artificielle, University d'Aix Marseilles, 1973. 

6. Colmerauer, A. "Les Systemes-Q ou un Formalisme pour Analyzer et 
Synthesiser des Phrases sur Ordinateur." Report #43, Department 
d'Informatique, Universite de Montreal, 1973. 

7. Clocksin, W. and C. Mellish. Programming in PROLOG. New York: 
Springer-Verlag, 1981. 

8. Kowalski, R. "Algorithm = Logic + Control." Communications of the 
ACM, 22 (1979), 7, pp. 424-436. 

9. Weeks, J. and H. Berghel. "A Comparative Feature-Analysis of Micro­
computer PROLOG Implementations." SIGPLAN Notices, 21 (1986),2, 
pp. 46-61. 

10. Weeks, J. and H. Berghel. "Turbo + PROLOG." Bulletin of the IEEE 

Computer Society Technical Committee on Personal Computing (October 
1986), pp. 1-7. 

11. Berghel, H., G. Stubbendieck, and E. Traudt. "Performance Character­
istics of Microcomputer PROLOG Implementations." Proceedings of the 
1986 ACM SigsmalliPC Symposium on Small Systems, 1986, pp. 64-71. 

12. Pereira, F., Bix Communication: ask. experts, message #17 (Electronic 
Mail). McGraw Hill/Byte Information Exchange, June 8, 1986. 

13. Rubin, D. "Turbo PROLOG: A PROLOG Compiler for the PC Program­
mer." AI Expert, Premier Issue (1986), pp. 87-98. 

14. Rubin, D. "Inside Turbo PROLOG." Computer Language (July 1986), pp. 
23-28. 

15. Shammas, N. "Turbo Prolog." Byte (September 1986), pp. 293-295. 
16. Muntz, R. "Performance Measure and Evaluation." In A. Ralston and E. 

Reilly, Jr., Encyclopedia of Computer Science and Engineering. New York: 
van Nostrand Reinhold, 1983. 

17. Heming, P. and J. Wallace. "How Not to Lie with Statistics: the Correct 
Way to Summarize Benchmark Results." Communications of the ACM, 29 
(1986), 3, pp. 218-221. 

18. Berghel, H. and J. Weeks. "On Implementing Elementary Movement 
Transformations with Definite Gause Grammars." Proceedings of the 
Fifth Phoenix Conference on Computers and Communications, 1986, pp. 
366-370. 

19. Berghel, H. "Extending the Capabilities of Word Processing Software 
through Hom Gause Lexical Databases." AFIPS Proceedings of the 
National Computer Conference (Vol. 55) 1986, pp. 251-257. 

20. Berghel, H. "Crossword Compilation with Hom Gauses." The Computer 
lournal [in press]. 

21. Berghel, H. "A Logical Framework for the Correction of Spelling Errors 
in Electronic Documents." Information Processing and Management [in 
press]. 

22. Wilk, P. "The Production and Evaluation of a Set of PROLOG Bench­
marks," Artificial Intelligence Applications Institute Report #AIAI­
PSG51, University of Edinburgh, 1986. 

23. Wilk, P. "PROLOG Benchmarking," Artificial Intelligence Applications 
Institute Report #AIAI-TR-14, University of Edinburgh, 1986. 

24. Wong, W. "PROLOG-A Language for Artificial Intelligence." PC Mag­
azine (October 14, 1986), pp. 247-263. 

25. Covington, M. "Programming in Logic-Part 2." PC Techlournal (January 
1986), pp. 145-155. 

From the collection of the Computer History Museum (www.computerhistory.org)



From the collection of the Computer History Museum (www.computerhistory.org)




